
HawkProof Inc.
Prepared by

Li Xiaolan
Approved by

SECURITY
ASSESSMENT
AggreLend (SVM Rust Contract)

Audit Report

JULY 2025

Executive Summary 01

Protocol Overview 02

Scope & Methodoloy 03

Strengths & Areas For Improvement 04

Findings Summary 07

Table of Findings 08

Detailed Findings 09

Recommended Remediation 10

Defense Suggestions 11

Table of Contents

HawkProof performed a comprehensive security assessment of AggreLend, a pooled
auto‑optimizer that allocates liquidity across multiple Solana lending venues to
maximize yield. The design consolidates deposits by token mint into a single pool per
mint, then routes that pooled liquidity to the currently highest‑yield market via
cross‑program invocations (CPIs) to integrated protocols such as Drift, Kamino,
MarginFi, Solend, and DefiTuna. Users interact through two primary operations,
deposit and withdraw, while the protocol sponsors periodic optimization transactions
that rebalance the entire pool.

The review focused on correctness and safety of user funds under adversarial inputs,
robustness against upstream program changes, and the handling of external accounts
prior to CPI calls. Strengths include atomicity of user operations, sane custody
boundaries, a principled share‑index mechanism, and a transaction‑level allowlist that
materially reduces composability‑based attack surface. The most significant risks arise
from reading doing overflow multiplication operations, performing unchecked byte
slicing, assuming specific deposit ordering in Kamino obligations, and relying on fixed
byte offsets for foreign program state.

No direct “funds‑steal” path was identified in the normal flow with valid venue
accounts. However, several issues can lead to reliable instruction‑level
denial‑of‑service (DoS), mis‑accounting of pool yield and shares if upstream layouts
drift, and brittleness that can surface under unexpected inputs or future venue
upgrades. All identified issues have concrete, low‑friction remediations. Implementing
the recommended owner/length/discriminator checks, correcting the Kamino index
assumption, codifying decimals constraints, and replacing unwrap() with explicit error
handling will significantly elevate the protocol’s safety margin as total value locked
increases.

HAWKPROOF | PAGE 3

Executive Summary
Assessment Overview

SECURITY ASSESSMENT

HAWKPROOF | PAGE 4

Protocol Details

SECURITY ASSESSMENT

PROJECT TITLE GITHUB PROJECT URL PLATFORM

AGGRELEND github.com/aggrelend aggrelend.com SOLANA

Protocol Overview

HawkProof reviewed AggreLend’s pooled, auto‑optimizing lending aggregator on
Solana with a focus on end‑user operations (deposit and withdraw). Users deposit
supported tokens (USDC, USDT, SOL, WBTC, WETH, etc.) into a PDA user_position
account. A single optimization transaction rebalances all positions across the entire
pool into integrated markets (Drift, Kamino, MarginFi, Solend, DefiTuna) to chase the
best APY. Shares and a pool‑level data track proportional ownership of the
venue‑deployed liquidity.

What’s robust:

 Strong CPI guard (check_cpi!) blocks CPI entry and self re‑entrancy;
whole‑transaction allowlist significantly shrinks the flash‑loan surface.
 Token custody is clean: deposits require the user’s PDA signature; withdrawals
require the PDA signer and multiple checks are made.
 Math uses 128‑bit arithmetic with scaling headroom; many arithmetic paths use
saturating ops.
 User ops are atomic: if a venue CPI fails, the transaction reverts (no partial state
writes).

Core Structure

HAWKPROOF | PAGE 5

SECURITY ASSESSMENT

The audit examined the deposit and withdraw instructions and all per‑venue helper
functions they dispatch to, including the logic that updates the user balance,
mints/burns shares, and performs CPIs into integrated venues. Administrative
initialization, optimization, and reset instructions were also reviewed. The assessment
used manual source review, adversarial input reasoning, and property‑based analysis
of arithmetic and state transitions. No on‑chain tests or privileged data were required;
conclusions are based solely on the provided code.

Methodology

Scope & Methodoloy

The audit is based on the following specific branches and commit hashes of the
codebase repositories:
• AggreLend Anchor Program
• Codebase: https://github.com/aggrelend/aggrelend-anchor
• Commit Hash: 8250edf7ff0d45cf19c7d999e5545a737b6f916c

We listed the files we have audited below:
• programs/aggrelend/src/deposit.rs
• programs/aggrelend/src/withdraw.rs
• programs/aggrelend/src/optimize.rs
• programs/aggrelend/src/create.rs
• programs/aggrelend/src/reset.rs
• programs/aggrelend/src/state.rs
• programs/aggrelend/src/helpers.rs
• programs/aggrelend/src/constants.rs
• programs/aggrelend/src/macros.rs

Scope

AggreLend benefits from several strong design choices. All operations are atomic,
ensuring no partial state changes if downstream CPIs fail. The share-based accounting
model with u128 math and scaled factors provides accuracy and overflow protection
under extreme conditions. The privilege model is strict, users cannot move pool funds
directly, only via a PDA signer. By allow-listing program IDs, the system reduces risk
from arbitrary CPIs, and mint-segregated pools ensure issues in one asset do not
affect others. Pre-call checks such as pubkey validation and account refreshes further
add reliability.

HAWKPROOF | PAGE 6

Strengths & Areas For
Improvement

Strengths

SECURITY ASSESSMENT

Areas For Improvement

The withdrawal formula (HKP-AL-01) risks overflow, and Kamino withdraw (HKP-AL-
02) assumes the deposit is at index 0, a brittle dependency. Multiple places use
unchecked slices and unwraps (HKP-AL-03, HKP-AL-08), enabling trivial panics. Hard-
coded byte offsets (HKP-AL-04) and token-program ambiguity (HKP-AL-05, HKP-AL-
07, HKP-AL-15) create fragility if upstream layouts or program variants change.
Arithmetic assumptions need guards: decimals ≤ 9 are not enforced (HKP-AL-06) and
unchecked downcasts (HKP-AL-13) can truncate values. Operational issues include
manual account close (HKP-AL-10), hard-coded space allocation (HKP-AL-14), and
overloaded errors (HKP-AL-16), which obscure causes and complicate debugging.
Addressing these will significantly raise resilience and maintainability.

Security Findings

CRITICAL HIGH MEDIUM LOW

1 2 5 6 2

SECURITY ASSESSMENT

Summary of Key Issues:

Insufficient account length validation. Before calling venue CPIs, the program
reads raw bytes from external accounts without checking their length. This
does not permit direct fund theft—since venue CPIs re-verify inputs—but it
does enable reliable instruction-level denial-of-service and creates risk of
silent mis-accounting if external layouts drift.
Unchecked indexing. Multiple paths rely on slicing and unwrap() on attacker-
supplied accounts. A maliciously short account can trigger predictable panics
and halt execution.
Kamino withdraw assumption. The withdrawal logic assumes the user’s
target deposit always resides at index 0 inside the obligation. If this
assumption fails, calculations may reference the wrong deposit values.
Hard-coded byte offsets. Several foreign program state fields are accessed
by fixed offsets, making the code brittle to upstream struct changes.
Missing mint ↔ token program check. A lightweight guard to ensure mints are
paired with the correct token program is absent, and should be added.
Decimals edge case. The calculation 10u128.pow(9 - decimals) underflows if
applied to mints with more than nine decimals, which is possible under
Token-2022.
Non-idiomatic account close. User accounts are “closed” by draining lamports
rather than using Anchor’s close attribute, which is functional but brittle and
less maintainable.

(ALL FINDINGS HAVE BEEN ADDRESSED AS OF 8/03/2025)

SUGGESTIONS

HAWKPROOF | PAGE 7

TOTAL FINDINGS: 16

ID TITLE SEVERITY STATUS

HKP‑AL-01 Collateral withdrawal calculation overflow risk CRITICAL Fixed

HKP‑AL-02 Kamino withdraw assumes target deposit at index 0 HIGH Fixed

HKP‑AL-03 Unchecked slicing / unwrap() can panic HIGH Fixed

HKP‑AL-04 Hard‑coded byte offsets of foreign program state MEDIUM Fixed

HKP‑AL-05 Missing owner/program check for mint ↔ token
program pairing MEDIUM Fixed

HKP‑AL-06 Decimals math pitfalls (10u128.pow(9 - decimals)) MEDIUM Fixed

HKP‑AL-07 Token‑program mismatch in Kamino deposit CPI
accounts MEDIUM Fixed

HKP‑AL-08 Missing length checks on remaining_accounts →
out‑of‑bounds panics MEDIUM Fixed

HKP‑AL-09 Solend path uses permissive fallback when collateral
supply is zero LOW Fixed

HKP‑AL-10 Manual account close via lamport borrow LOW Acknowledged

HKP‑AL-11 Repeated data.borrow() inside tight loops
(micro‑inefficiency) LOW Fixed

HKP‑AL-12 Placeholder oracle accounts in do_refresh_reserve LOW Fixed

HKP‑AL-13 Unchecked downcasts (as u64, as u8) sprinkled
across math paths LOW Fixed

HKP‑AL-14 Hard‑coded space=104 for UserPosition allocation LOW Acknowledged

HKP‑AL-15 Ambiguous token‑program usage for deposit transfer SUGGESTION Acknowledged

HKP‑AL-16 Overloaded DoNotHavePermission error obscures
root causes SUGGESTION Fixed

(All Findings Have Been Addressed As Of 8/03/2025)

Table of Findings
SECURITY ASSESSMENT

HAWKPROOF | PAGE 8

HKP‑AL-01 Collateral withdrawal calculation overflow risk CRITICAL Fixed

HKP‑AL-01 — Collateral withdrawal calculation overflow risk (CRITICAL)

SECURITY ASSESSMENT

Description

In the Kamino withdraw helper, the amount of collateral to withdraw is computed with
the following formula:

This implementation performs intermediate calculations using u64, including values
derived from market_value_sf and market_price_sf. For high-supply, low-price tokens
(e.g., BONK-like tokens with small unit price but massive supply), these intermediate
values can easily exceed the 64-bit integer range and overflow. Because Rust panics
on integer overflow in debug mode (but wraps silently in release mode for unchecked
ops), this leads either to program panics or silent corruption of the collateral
calculation.

The risk is most acute with tokens that:

Have low unit prices, yielding extremely large market_price_sf denominators, and
Have high lamport-denominated balances, magnifying collateral_deposited and
amountsend.

This combination drives intermediate multiplication well beyond 2^64, making u64
insufficient.

HAWKPROOF | PAGE 9

Impact:
Overflow Panic: Transaction fails immediately if overflow occurs, preventing user
withdrawals.
Silent Mis-Calculation: Depending on compiler optimizations and wrapping semantics,
withdrawals could compute a much smaller or larger collateral value than intended.
Custody Divergence: Incorrect collateral calculations can allow under-collateralized
withdrawals, diluting pool reserves and directly harming other depositors.

Exploitation Scenario:
A pool supports BONK (low-price, high-supply token).
A user deposits a large balance, creating a large collateral_deposited value.
market_value_sf and market_price_sf reflect BONK’s micro-price scale factors,
producing very large denominators.
The multiplication (amountsend * collateral_deposited) produces an intermediate
result > 2^64.
The conversion to u64 silently truncates or panics, yielding:

A revert (denial-of-service on withdraws for this pool), or
A mis-calculated collateral_to_withdraw that causes the withdrawing user to
extract more collateral than originally planned.

Fixed Code Recommendation
 All calculations should be performed entirely in u128, with a final checked conversion
to u64 only at the end:

SECURITY ASSESSMENT

HAWKPROOF | PAGE 10

HKP‑AL-02 Kamino withdraw assumes target deposit at index 0 HIGH Fixed

HKP‑AL-02 — Kamino withdraw assumes target deposit at index 0
(HIGH)

SECURITY ASSESSMENT

Description

withdraw_from_kamino derives market_value_sf and collateral_deposited by reading
the first deposit entry in the obligation’s deposits array. This assumes the relevant
deposit for the pool’s mint is always stored at index 0. In contexts where a user’s
obligation contains multiple deposits, or if ordering changes, the function may
compute collateral for the wrong deposit. This can lead to erroneous
collateral_to_withdraw and mismatched internal accounting, and in some corner cases
could cause the CPI to withdraw an amount for a different asset than the one
intended.

Impact
Incorrect withdrawal math if the target deposit is not at index 0.
Potential CPI mismatch or partial success that diverges from internal expectations.

HAWKPROOF | PAGE 11

SECURITY ASSESSMENT

Exploitation Scenarios
Multiple deposits in obligation

A user (or adversarial sequence) creates an additional deposit in the same
obligation.
Index 0 no longer corresponds to the pool’s mint.
Math uses the wrong deposit values; CPI behavior may not match internal
accounting.

Ordering shift through maintenance or upgrades
Upstream venue changes storage order while remaining CPI‑compatible.
Helper reads index 0 out of habit; accounting diverges.

Recommendations
Iterate the obligation’s deposits and locate the entry whose reserve or mint
matches the pool’s configured target before reading fields.
Fail explicitly if the matching entry is not found.
Apply the same owner/length/discriminator checks described in HKP‑01/HKP‑02
around all reads.

HAWKPROOF | PAGE 12

HKP‑AL-03 Unchecked slicing / unwrap() can panic HIGH Fixed

HKP‑AL-03— Unchecked slicing / unwrap() can panic (HIGH)

SECURITY ASSESSMENT

Description

Numerous reads use unchecked byte ranges and try_into().unwrap() conversions on
data sourced from accounts provided by the caller. If an account is shorter than
expected or not the expected type, the program panics. While a panic reverts the
instruction and protects funds, it creates a straightforward path to reliable per‑call
DoS and produces unhelpful error surfaces for clients.

This implementation performs intermediate calculations using u64, including values
derived from market_value_sf and market_price_sf. For high-supply, low-price tokens
(e.g., BONK or SHIB-like tokens with small unit price but massive supply), these
intermediate values can easily exceed the 64-bit integer range and overflow. Because
Rust panics on integer overflow in debug mode (but wraps silently in release mode for
unchecked ops), this leads either to program panics or silent corruption of the
collateral calculation.

HAWKPROOF | PAGE 13

Impact
Reliable instruction‑level DoS and confusing runtime errors for users.
Increased compute usage on error paths and noisier preflight outcomes.

Exploitation Scenario
Supply a 64‑byte account for a field assumed at offset 248.
The first attempted slice beyond the buffer panics; the instruction fails
deterministically.

Recommendations
Adopt safe read utilities that check range bounds and convert with error mapping
instead of panicking.
Normalize all pre‑CPI reads to return ErrorCode::InvalidAccountData rather than
causing a runtime panic.

SECURITY ASSESSMENT

We see the same issue inside the MarginFi calculation:

HAWKPROOF | PAGE 14

HKP‑AL-04 Hard‑coded byte offsets of foreign program state MEDIUM Fixed

HKP‑AL-04 — Hard‑coded byte offsets of foreign program state

SECURITY ASSESSMENT

Description

All venue helpers interpret external account data via hard‑coded offsets. While many
protocols append fields rather than reorder them, changes in packing, padding, or
versioning can invalidate offsets. Since your internal accounting occurs before CPI, it
can silently diverge from reality even when custody operations remain correct.

Affected Code (representative)
Solend reserve/obligation fields at offsets 171, 179, etc.
Drift cumulative deposit interest at [8..][456..+16].
MarginFi bank asset_share_value at [80..96].
Kamino obligation value fields starting at 96, 96+40, etc.

HAWKPROOF | PAGE 15

Impact
Silent mis‑accounting of yield and shares following upstream layout changes.
Unexpected failures if new layouts become smaller than assumed.

Exploitation Scenario
1. Venue introduces a version byte or padding that shifts fields; CPI calls still

succeed.
2. Helper continues to read stale offsets and misprices shares across depositors.

Recommendations
For Anchor accounts, verify discriminator and minimum length and consider
checking a known version or size for the structs you depend upon.
When available, prefer view CPIs or stable accessor routines over raw offset
parsing.
Maintain an allowlist of exact reserve/market pubkeys per pool to constrain
ambiguity.

SECURITY ASSESSMENT

HAWKPROOF | PAGE 16

HKP‑AL-05 Missing owner/program check for mint ↔ token
program pairing MEDIUM Fixed

HKP‑AL-05 — Missing owner/program check for mint ↔ token program
pairing

SECURITY ASSESSMENT

Description

The program accepts a mint_account: InterfaceAccount<Mint> and token_program:
Interface<TokenInterface> but does not assert that the mint’s owner equals the
provided token program’s pubkey. While downstream ATAs and venue CPIs usually
enforce correct pairing, an early validation removes ambiguity and yields cleaner
errors.

Affected Code
deposit / withdraw accounts do not contain:

Impact
No direct funds risk, but increases the chance of confusing failures and wasted
compute if mint/program mismatch is supplied.

Recommendations
Add the above assertion to both deposit and withdraw to codify the assumption
and fail early with a clear error.
Optionally persist the chosen token program per pool and assert consistency on
later calls.

HAWKPROOF | PAGE 17

HKP‑AL-06 Decimals math pitfalls (10u128.pow(9 - decimals)) MEDIUM Fixed

HKP‑AL-06 — Decimals math pitfalls (10u128.pow(9 - decimals))

SECURITY ASSESSMENT

Description

Some calculations derive a divisor as 10u128.pow(9 - decimals). If a mint with more
than nine decimals is ever introduced (possible with both token 2022 & main token
program), this expression underflows and panics. The current configuration lists a
carefully selected set of mints where decimals are at or below nine, so the issue is
latent today but should be guarded explicitly.

Affected Code (example):

Impact
Underflow panic if used with decimals > 9. (possible with both token 2022 & main
token program)
Latent reliability bug dependent on future configuration.

Recommendations
Enforce require!(decimals <= 9, ErrorCode::UnsupportedToken); after MINT_TABLE
lookup, or generalize the math for decimals > 9 by multiplying the numerator by
10^(decimals - 9) instead of dividing.

HAWKPROOF | PAGE 18

HKP‑AL-07 Token‑program mismatch in Kamino deposit CPI
accounts MEDIUM Fixed

HKP‑AL-07 — Token‑program mismatch in Kamino deposit CPI
accounts

SECURITY ASSESSMENT

Description

In deposit_into_kamino, the CPI uses the same token program two times: both
token_program for collateral_token_program and token_program for
liquidity_token_program. If the collateral mint happens to be Token‑2022 (PYUSD) and
default_token_program is classic (or vice‑versa), the CPI can fail or behave
unexpectedly.

Impact
Configuration foot‑gun: subtle mismatches cause venue CPI rejection.
Increases operational complexity when supporting both token programs.

Example Scenario
1. Liquidity mint is Token‑2022; token_program points to classic SPL Token.
2. CPI fails with a generic program error.
3. Operations halt until the correct token program is threaded.

Recommendations
Derive both token programs from the actual owners of the respective mints
(collateral and liquidity), or require them explicitly as accounts and assert
ownership.
Add an event/log line stating the chosen program ids for transparency.

HAWKPROOF | PAGE 19

HKP‑AL-08 Missing length checks on remaining_accounts →
out‑of‑bounds panics MEDIUM Fixed

HKP‑AL-08 — Missing length checks on remaining_accounts →
out‑of‑bounds panics

SECURITY ASSESSMENT

Description

Many paths index remaining_accounts directly (e.g., rem[14], remaining_accounts[9])
without verifying the vector length first. If a caller supplies fewer accounts than
expected, the program will panic with an out‑of‑bounds access before reaching any
require! guard.

Impact
Persistent instruction‑level failure by providing too few remaining_accounts.
Poor diagnosability (generic panic rather than a targeted error).

Example Scenario
1. Caller supplies only 6 remaining accounts for a path that expects ≥ 10.
2. The first index beyond length panics.
3. Repeated calls reliably fail the instruction (no funds loss, but persistent failure).

Recommendations
Add a per‑venue constant (const MIN_RA: usize = ...) and require!(rem.len() >=
MIN_RA, ErrorCode::InvalidAccountData).
Prefer de‑structuring with early get() + ok_or instead of hard indexes.
Keep indexes in one place (structured binding) to avoid future drift.

HAWKPROOF | PAGE 20

HKP‑AL-09 Solend path uses permissive fallback when collateral
supply is zero LOW Fixed

HKP‑AL-09 — Solend path uses permissive fallback when collateral
supply is zero

SECURITY ASSESSMENT

Description

In solend_total_balance_with_yield, when collateral_mint_total_supply == 0 (or
total_liquidity_wads == 0), the code sets liquidity_amount = deposited_amount as a
fallback instead of failing. This may overstate liquidity and propagate incorrect
accounting during initialization or edge states.

Impact
Incorrect balance attribution in rare but important conditions (fresh pools, halted
reserves).
Could enable over‑minting of shares or premature withdrawals based on inflated
amounts.

Recommendations
Replace fallback with a hard error (ErrorCode::InvalidLiquidity) and instruct callers
to retry after reserve initialization.
Optionally special‑case “brand‑new reserve” only when you can prove the right
relationship from other fields.

HAWKPROOF | PAGE 21

HKP‑AL-10 Manual account close via lamport borrow LOW Acknowledged

HKP‑AL-10 — Manual account close via lamport borrow

SECURITY ASSESSMENT

Description

When a UserPosition is empty, lamports are manually transferred from the account to
the user to “close” it, leaving a zero‑lamport account until runtime reclamation. This
approach is functional and safe when performed only after confirming zero balances,
but it is non‑idiomatic and can lead to less clear explorer traces and unnecessary
edge‑case considerations.

Affected Code (withdraw.rs):

Impact
No security impact under current gating; mainly a clarity and tooling concern.

Recommendations
Prefer the Anchor idiom #[account(close = user)] or assign the account to the
system program and realloc(0) before draining to make lifecycle and explorer
visibility clearer.

HAWKPROOF | PAGE 22

HKP‑AL-11 Repeated data.borrow() inside tight loops
(micro‑inefficiency) LOW Fixed

HKP‑AL-11 — Repeated data.borrow() inside tight loops
(micro‑inefficiency)

SECURITY ASSESSMENT

Description

Some loops re‑borrow account data each iteration. While the runtime permits it, this
creates unnecessary refcount churn and tiny compute overhead.

Impact
Small, avoidable compute cost and stack activity.
No security impact.

Example Scenario
1. High‑throughput optimizer invokes deposit/withdraw frequently.
2. Repeated borrows add up to measurable CU overhead.
3. Block packing gets marginally tighter after cleanup.

Recommendations
Borrow once outside the loop (let d = obligation.data.borrow();) and reuse.
Apply the same pattern to other helpers (MarginFi, Drift, Solend).

HAWKPROOF | PAGE 23

HKP‑AL-12 Placeholder oracle accounts in do_refresh_reserve LOW Fixed

HKP‑AL-12 — Placeholder oracle accounts in do_refresh_reserve

SECURITY ASSESSMENT

Description

In Kamino’s reserve refresh, oracle accounts (pyth_oracle, switchboard_price_oracle,
switchboard_twap_oracle) are supplied as the Kamino program account itself, with
scope_prices as the only real market data source. If the venue later requires a real
oracle account or validates multiple oracle inputs, this placeholder approach can
produce confusing failures.

Example Scenario
1. Kamino starts enforcing that either Pyth or Switchboard accounts be valid.
2. The call passes the program id as a placeholder; refresh fails with a generic error.
3. Operations are blocked until the correct oracles are wired.

Recommendations
Pass actual oracle accounts where available, or document the dependency on
scope_prices clearly.
Add a feature flag to toggle oracle sources per environment.

HAWKPROOF | PAGE 24

HKP‑AL-13 Unchecked downcasts (as u64, as u8) sprinkled
across math paths LOW Fixed

Impact
Silent truncation on unexpected inputs; harder post-mortems.
Inconsistent safety posture vs other areas that use try_from.

Example Scenario
 A venue scaling change creates a transient large intermediate. A silent downcast
trims it, causing small but compounding accounting drift.

Recommendations
Use u64::try_from(...)/u8::try_from(...) and bubble a precise error.
Create helpers: try_u64(v: u128) -> Result<u64> to standardize.

HKP‑AL-13 — Unchecked downcasts (as u64, as u8) sprinkled across
math paths

SECURITY ASSESSMENT

Description

Several code paths cast from wider integers to narrower ones using as, which
truncates silently. While many casts are “safe” in normal ranges, they encode
assumptions that can bite during venue anomalies.

Affected Code:
decimals as u8 passed to transfer_checked
(use_balance_scaled as u64) patterns in helpers
(liquidity_amount as u64) in Solend math

HAWKPROOF | PAGE 25

HKP‑AL-14 Hard‑coded space=104 for UserPosition allocation LOW Acknowledged

HKP‑AL-14 — Hard‑coded space=104 for UserPosition allocation

SECURITY ASSESSMENT

Description

The UserPosition PDA space is set to a literal 104. This matches the current layout (96
bytes + 8‑byte Anchor discriminator) but is fragile to future field additions.

Impact
Future schema changes may cause under‑allocation and runtime failures.
Increases the cost of safe migrations.

Example Scenario
1. A new field is added to UserPosition.
2. Older code paths still allocate 104 bytes.
3. Accounts fail to (re)initialize due to insufficient space.

Recommendations
Use space = 8 + UserPosition::INIT_SPACE or compute with std::mem::size_of::
<UserPosition>().
Introduce a versioned struct pattern if schema evolution is expected.

HAWKPROOF | PAGE 26

HKP‑AL-15 Ambiguous token‑program usage for deposit transfer SUGGESTION Acknowledged

Impact
Maintainability/clarity issue; future contributors may assume token‑2022‑only
behavior.
Risk of misconfiguration if tooling injects a classic token program for a classic mint
without realizing the wrapper in use.

Example Scenario
1. A classic SPL mint (Token v1) is used by ops.
2. Tooling passes the classic token program; the wrapper still compiles but confusion

arises about which extra accounts/extensions are expected.
3. Teams lose time debugging an otherwise routine transfer.

Recommendations
Branch explicitly on mint.owner:

classic: anchor_spl::token::transfer_checked
token‑2022: anchor_spl::token_2022::transfer_checked

Or centralize a helper transfer_checked_interface(...) that logs the selected program
id for transparency.

HKP‑AL-15 — Ambiguous token‑program usage for deposit transfer

SECURITY ASSESSMENT

Description

Deposits and withdrawals uses anchor_spl::token_2022::transfer_checked
unconditionally while the program accepts a generic TokenInterface for
token_program. This is functionally workable when the passed token_program
matches the mint’s owner, but the intent is not obvious to maintainers and increases
the chance of configuration mismatches.

HAWKPROOF | PAGE 27

HKP‑AL-16 Overloaded DoNotHavePermission error obscures
root causes SUGGESTION Fixed

HKP‑AL-16 — Overloaded DoNotHavePermission error obscures root
causes

SECURITY ASSESSMENT

Description

The program reuses ErrorCode::DoNotHavePermission for varied validation failures
(zero amount, wrong mint, wrong program id, etc.). While functional, overloaded errors
degrade UX and telemetry.
Many require! and if branches across deposit_*, *_total_balance_with_yield, and checks
such as if amount == 0.

Impact
Harder to distinguish configuration errors from authorization errors.
Front‑end must guess the cause, increasing support burden.

Example Scenario
1. A user passes amount == 0.
2. The program returns DoNotHavePermission.
3. The UI interprets it as an auth issue, confusing the user.

Recommendations
Add targeted errors: InvalidAmount, WrongMint, WrongProgramId,
InvalidMarketIndex, etc.
Reserve DoNotHavePermission for actual authorization failures.

HAWKPROOF | PAGE 28

The first priority is to eliminate correctness flaws that can directly misprice user
balances or allow arithmetic failure. Begin with HKP-AL-01 (Collateral withdrawal
calculation overflow risk) by moving all intermediate math to u128, introducing explicit
checked_mul/checked_div, and using fallible downcasts when converting to u64. This
change should be applied uniformly to Kamino, Drift, Solend, and MarginFi paths
wherever scaled fixed-point math is performed. In the same tranche, resolve HKP-AL-
06 (Decimals math pitfalls) by guarding the 10u128.pow(9 - decimals) pattern and
either enforcing decimals ≤ 9 or refactoring the scale so it remains correct for higher-
precision Token-2022 mints. These two items remove the most acute sources of
overflow and truncation, and they directly protect the integrity of
cumulative_yield_index and share calculations.

Next, address venue correctness and account selection logic. HKP-AL-02 (Kamino
withdraw assumes target deposit at index 0) should be fixed by locating the user’s
deposit entry by reserve or mint rather than by position, failing clearly if no match is
found, and re-computing market_value_sf/collateral_deposited from the matched entry.
In parallel, repair HKP-AL-07 (Token-program mismatch in Kamino deposit CPI
accounts) by enforcing that collateral and liquidity token accounts use the correct
token program for the specific mint involved; this prevents mixed Token/Token-2022
flows and ensures that the “actual received” amount after CPI can be reconciled. As a
venue-edge case, tighten HKP-AL-09 (Solend permissive fallback when collateral
supply is zero) by converting the fallback into a hard error so that brand-new or
paused reserves cannot propagate misleading balances into the pool.

Recommended Remediation

Remediation (Prioritized)

SECURITY ASSESSMENT

HAWKPROOF | PAGE 29

With venue-level correctness stabilized, move to input validation and parser
hardening. HKP-AL-08 (Missing length checks on remaining_accounts) and HKP-AL-03
(Unchecked slicing / unwrap() can panic) both require a systematic guard layer.
Introduce small per-venue wrappers that: (1) assert remaining_accounts.len() meets a
minimum; (2) assert each account’s owner matches the expected program; (3) assert
minimum data lengths (and discriminators for Anchor accounts); and (4) expose named
fields so downstream logic never indexes raw slices. This pattern will also reduce the
surface area implicated in HKP-AL-04 (Hard-coded byte offsets of foreign program
state) by centralizing the offsets in a single, documented location and by adding
invariant checks (e.g., version bytes, expected sizes) before any field extraction.
Together, these changes convert latent panics into deterministic, domain-specific
errors and make future maintenance far safer.

Boundary checks come next. Implement HKP-AL-05 (Missing owner/program check
for mint ↔ token program pairing) at the start of both deposit and withdraw so
mint.owner == token_program.key() is always enforced, and reconcile HKP-AL-15
(Ambiguous token-program usage for deposit transfer) by applying a single,
consistent rule: the token program variable that governs ATA derivation and
transfer_checked must be the one that actually owns the mint. This alignment prevents
callers from wedging an instruction with inconsistent program choices and ensures
transfer semantics (including Token-2022 extensions) are applied predictably across
all paths.

Once the safety rails are in place, improve operational clarity and developer
ergonomics. HKP-AL-16 (Overloaded DoNotHavePermission error) should be resolved
by introducing a more granular error taxonomy—InvalidOwner, InvalidLength,
LayoutMismatch, WrongTokenProgramForMint, UnsupportedDecimals, and
InvalidReserve—so logs and monitoring can distinguish configuration issues from
adversarial input and from venue edge states.

Remediation (Continued)

SECURITY ASSESSMENT

HAWKPROOF | PAGE 30

HKP-AL-10 (Manual account close via lamport borrow) can then be refactored into
idiomatic #[account(close = ...)] semantics, which makes intent obvious and future-
proofs behavior against runtime changes. Finally, tackle maintainability items: HKP-
AL-11 (Repeated data.borrow() inside tight loops) can be addressed by caching slices
once per account read; HKP-AL-12 (Placeholder oracle accounts in do_refresh_reserve)
should be replaced with real oracle keys and an allowlisted set per network; and HKP-
AL-14 (Hard-coded space = 104 for UserPosition) should be replaced by INIT_SPACE
derived from the struct or a documented constant computed from field sizes. These
last steps do not materially change risk posture but reduce the probability of subtle
performance or compatibility issues in future iterations.

To control risk during rollout, apply these changes in staged deployments. Start with a
devnet feature flag that enables the new guards and math path; graduate to a canary
set of mainnet pools with heightened observability; and only then enable globally.
Success criteria for each stage should include: no panics under malformed inputs;
exact reconciliation between venue-reported balances and internal accounting; and
stable compute usage within established limits.

Remediation (Continued)

SECURITY ASSESSMENT

HAWKPROOF | PAGE 31

A durable defense-in-depth posture for AggreLend combines configuration controls,
precise erroring, and rigorous verification that mirrors real-world adversarial
conditions. Configuration should move away from hard-coded constants toward on-
chain, network-scoped registries: store allow-listed program IDs for every integrated
venue, token program, and oracle, as well as per-market constants that your parsers
depend on. This directly mitigates HKP-AL-12 by ensuring that “placeholder” oracle
accounts are rejected at the boundary and gives operations the ability to rotate
compromised or deprecated addresses without a code change. A lightweight circuit
breaker at the pool level further reduces blast radius during venue incidents: when
upstream behavior is anomalous (e.g., prices near zero, reserves reporting impossible
totals), new deposits and withdrawals can be paused without touching state, buying
time to investigate while preserving user funds.

Verification should begin with property tests over the accounting core. Instrument
invariants that capture the spirit of correctness: cumulative_yield_index should be
monotonic in the absence of an explicit negative adjustment; shares minted and
burned must conserve value under all paths; and “withdraw-max” must map to the
exact available entitlement after applying fees and scale factors. These properties
directly exercise the fixes for HKP-AL-01 and HKP-AL-06, ensuring that no
combination of decimals, prices, or scaled balances can overflow u128, divide by zero,
or silently truncate during downcasts as flagged in HKP-AL-13. Complement property
tests with differential tests that compare your computed balances against each
venue’s canonical method (or a trusted reference implementation) across a matrix of
assets, including low-price, high-precision tokens where rounding is most treacherous.

Defense-in-Depth & Test Plan

Defense Strategies

SECURITY ASSESSMENT

HAWKPROOF | PAGE 32

Input-hardening requires adversarial testing, not just happy-path unit tests. Build
fuzzers that generate remaining_accounts vectors of varying lengths, wrong owners,
misordered accounts, and under-length data regions to ensure that every path returns
targeted, human-readable errors instead of panics—closing the loop on HKP-AL-08
and HKP-AL-03. For HKP-AL-04, maintain a “layout manifest” per venue that lists the
byte offsets your parsers consume; write tests that fail loudly when account sizes or
version bytes change, forcing a code update rather than permitting silent mis-parsing.
For Kamino specifically (HKP-AL-02), synthesize obligations with multiple deposits in
different orders, mutate them between refreshes, and assert that your selection logic
always resolves the correct entry and never falls back to index-based assumptions.

Observability and operational rehearsal complete the plan. Emit structured events for
all critical branches—failed account owner checks, layout mismatches, decimals
rejections, and venue selection failures—so dashboards can track error-rate shifts
during canary rollouts. Run the full suite under solana-program-test and a local
validator with realistic CU limits, then rehearse a canary enablement on a small subset
of mainnet pools with pre-defined rollback triggers. Success here is measured not
only by correctness under stress but also by clarity: when something fails, the logs
should point unambiguously to the failing guard (e.g., WrongTokenProgramForMint vs
LayoutMismatch) so remediation is fast and low-friction. By coupling these
configuration controls, adversarial test harnesses, and explicit errors, the protocol
gains multiple layers of resilience that continue to pay dividends as venues evolve
and the asset set grows.

Defense Strategies (Continued)

SECURITY ASSESSMENT

HAWKPROOF | PAGE 33

team@hawkproof.com

www.hawkproof.com

t.me/hawkproof

Need an audit or
having any questions?

Contact us.

