
You Can Make a Bad Website!
Lesson one: What makes a website work?

A Shitty Guide by Zenith

(It’s not not that quick or easy but it can surely be free!)

DISCLAIMER

I am a hobbyist webmaster and I don’t know JavaScript. So this series of documents

will solely deal with HTML and CSS capabilities. This isn’t intended to be used as if it’s a
master guide. As the title implies, I strongly believe in “you can make it better later, but first
you have to make it exist.” My own coding style is pretty sloppy, and I frequently have to
access online guides for help while working. This is just as much a refresher and practice
for me as it may be for you.

Everything is difficult until it is easy. When first learning HTML and CSS I was
confused all the time and easily discouraged by others having websites that I found prettier
than my own. Always remember that the shittiest indie website has more heart in it than the
best corporate owned platform. It’s okay to ask friends for help, to look at tutorials, and most
importantly, to accept you fucked something up beyond repair and start over. The good thing
about being alive is that the point of it is to learn. Don’t give up, always take breaks, and
remember it’s only text and there is no grade or money on the line.

TABLE OF CONTENTS
1. What are HTML and CSS?

2. HTML Tags Overview

3. The Absolute Bare-bones of CSS (AKA “Fonts and Colors the Likes of Which I’ve Never
Seen!”)

4. How to Keep Your Code Semi-Organized

5. Where Can I Write Code?

6. Where Can I Put My Website? (Working With Restrictions and Indie Site Etiquette)

7. [EPILOGUE] Why Do I Want You to Make Your Own Website? Or a Manifesto on
Webmastering

OKAY SO WHAT THE FUCK ARE HTML AND CSS?

HTML and CSS are the languages that you’ll be coding in. Every website you use is

built using these (and then probably JavaScript. But I don’t know how to do all that, so don’t
worry about it.)

If you imagine a website like a house, HTML is the wall and CSS is the paintings you
hang on it: HTML builds all the elements that CSS will style. This is reflected in their names:

HTML stands for Hypertext Markup Language

CSS stands for Cascading Style Sheets

In order for a website to work, it needs HTML in order to structure the individual
pieces of your website. CSS is not required, but using it will make your website much prettier
and easier to read. First, let’s go over some HTML tags and explain what they mean and do.

To create an HTML or CSS document, you simply need to create a text file with the
end-of-file marker .html or .css.

WHY IS EVERYTHING IN BRACKETS?: HTML TAGS
When you look at an HTML document, you’ll notice that there are several tags written

in angle (< >) brackets. These are the commands you’re giving the browser so it can display
your content. It is vitally important to make sure you always close them. I have spent
countless hours pouring over my code and rewriting line after line following a breakage, only
to then discover I simply forgot to close an HTML tag and subsequently confused the
browser, leaving it unable to show anything (or show everything, but completely incorrectly.)
I won’t be covering every HTML tag ever (as that would be pointless) but I will give you a
rundown of commonly used tags.

At the top of every HTML document you’ll be able to make following my advice, you
will have to type up something similar to the following:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8"/>

<link rel="stylesheet" href="/style.css">

<title>YOUR PAGE TITLE</title>

</head>

Let’s break down what each of these lines are doing, and why you need them.

<!DOCTYPE html> This line tells the browser that the document you are
submitting to it is an HTML document and to read the text
on it as HTML commands.

<html lang="en"> What language you are writing your page? Mine is “en”
because I am using English.

<head> This is the opening tag that tells your browser that the
following information shouldn’t be visible on the webpage
itself. It is information for the browser to use to correctly
format the following HTML and CSS. This information is
called metadata.

<meta charset="UTF-8"/> This specifies what characters you are typing in. UTF-8 is
the preferred character set and includes every current
Unicode character

<link rel="stylesheet"
href="/style.css">

This tells your page to access a CSS document to apply
styling rules to your HTML elements.

<title>YOUR PAGE
TITLE</title>

These tags allow the text written between them to display
as the text written at the top of the tab. If you’ve ever
noticed the name of your tab switch to match the page
you’ve clicked on, it was through the use of this tag.

</head> This closes the <head> tag we started with. It tells the
browser that everything after this will be displayed on the
page itself and should be visible.

Now that we’ve gone over the tags you’ll use in the head of an HTML document, let’s
review some of the ones used in the body of one. Here is an example of what an HTML
document with no CSS styling could have in its body.

<body>

<center>

<h1>THIS IS THE TITLE OF MY PAGE!</h1></center>

<p>And this is the text on it!</p>

</body>

Like before, let’s go over what these tags mean.

<body> This tag tells the browser that everything after it is to be
visually displayed on the page.

<center> As the name implies, this centers anything in it!
... <a> is what defines a hyperlink in HTML. We need the href

attribute in order to make the link usable. The text after
the equals sign, “/index.html”, refers to the homepage of
your website. AKA, the first page you see when you open
your site. In this example, we’re making an image
clickable as a link to lead to your homepage.

<img src="IMAGE.PNG"
alt="IMAGE DESCRIPTION">

This tag defines images. The src attribute allows you to
type the link to your image after the equals sign. The alt
attribute allows you to provide alt text for screen readers
to read to describe the image to users relying on them.
 tags are self contained, they don’t have a closing
tag, Everything is typed within one set of angle brackets.

<h1>THIS IS THE TITLE OF
MY PAGE!</h1>

<h1> defines heading text. These tags range from h1 to h6,
with h1 being the largest text and h6 being the smallest.

</center> This closing tag lets the browser know to stop centering
everything.

<p>And this is the text on
it!</p>

<p> defines paragraph text. Because it is outside the
center bracket, it will display on the left side of the
browser window as there is no styling applied to it.

</body> This ends the visible content on a page. Things written
after this, such as scripts, will not be visible but impact
the website’s function in other ways.

While the examples given cover a lot of ground for HTML tags, I’ll explain some more
commonly used ones.

… Makes text bold.
<i>…</i> Makes text italicized.

<u>…</u> Underlines text.
<blockquote>…
</blockquote>

Makes text into a blockquote. This is intended to be used
to show that something is being quoted from another
source, however, I frequently use it to “indent” sections of
text.

 Indicates a line break in text. HTML won’t read hitting the
“enter” key on a keyboard as a line break, so you need to
use
 any time you want one.

<audio> Defines an audio element.
<div> Defines a section of a web page. <div> elements will

typically be styled with CSS.
<header>…</header> Defines a section of a website as a header.
<footer>…</footer> Defines a section of a website as a footer.

<style>…</style> You can use <style> tags to define the CSS of a document.
I strongly recommend not doing this unless absolutely
necessary as it can make your document more confusing
to read after the fact. <style> can also be used to modify
HTML elements that would ordinarily be styled by your
CSS document to have different properties than what is
standard. I sometimes do this, but try to keep it to a
minimum to keep my documents readable.

<script>…</script> Defines something as a piece of script for the document
to execute. While I don’t know JavaScript, my website
includes some JS elements from free resources online
and therefore uses the <script> tags.

Of course, this list does not cover all HTML tags as previously stated, but by using the
example tags I’ve given, you can create a lot of cool web pages when using CSS to style
them.

NOW GIVE IT COLORS: ABSOLUTE ESSENTIALS OF CSS
Like with HTML, there are many elements of CSS and I cannot describe them all in

this document. In some ways, CSS can seem much more confusing while also being more
straightforward than HTML. For the purposes of this document, I will explain the basics of
changing the color of elements, the size of fonts and images, and offer a brief overview of
position and flex boxes. The final two functions will NOT be explained in depth in this
document, merely defined in order for you to become more familiar with these terms. Don’t
worry about them right now!

Unlike HTML, CSS does not use angle brackets nor HTML’s tag system. CSS operates
by specifying a selector and then writing declarations. The selector of a CSS rule is an
element of HTML that you want to style. In order for you HTML document to follow your CSS
rules, you must link the two together by designating a .css file as your stylesheet, or use
<style> tags in the <head> of a document. Below, I will write a CSS rule and describe what
each part of it is doing.

p { color: red;

font-size: 1.5em; }

In this example, we are styling the element <p>, the paragraph text. We are
designating its font color as red and it’s size as 1.5em. As you can see, in order to designate
the selector, we have written the name of its tag without angle brackets, followed by a curly
bracket containing declarations. Notice that after each declaration there is a semicolon. This
is necessary to end each declaration in order for the document to read and understand the
next declaration to the selector. Because CSS can be applied to any HTML element, I will
focus mostly on the following for this intro tutorial:

1. Very beginner <div> styling (This will not include the use of flex boxes or float
properties.)

2. How to change the font of your page through local files

3. A basic definition of flexboxes and position declarations. These topics will be
discussed more in-depth in following lessons.

Now, let’s look at a snippet of CSS that is styling a <div> with the class “container.” I
will explain what each line means in text highlighted in blue. The CSS itself will be
highlighted in yellow.

BEGINNER <DIV> STYLING

.container We are using a period to tell the document that this will be the class of a <div>

{ width: 500px; The width of the <div> will be 500px. This means that when text exceeds it
will go to another line.

height: auto; This means the <div>’s height will adjust for the amount of content held in
it.

margin: auto; The margin of the page determines the amount of space surrounding the
outside of the <div>. “Auto” allows the browser to automatically calculate the margin of the

<div> on the page.

padding: 5px; Padding determines the amount of space between the content of the
<div> and the borders of the <div> itself. We’re allowing it to generate 5px between the

content and border.

overflow: auto; Overflow determines what will happen to elements placed inside the
<div> that are too large for the specified width and height. Using “auto” means that if an

element is bigger than the <div> its contained in, the browser will create a scroll bar to allow
you to scroll and see more of the element. However, all elements fit in the <div>, no scroll

bar will be shown.}

There are many other ways you may want to style a <div>. A good collection of how to
use various CSS elements can be found at W3Schools. Now, let’s look at how CSS works to
change the font of an element. CSS styling will be highlighted in yellow. Explanations of
what each line does will be highlighted in blue.

USING LOCAL FONTS

@font-face { Specifies a rule to display a custom font.

font-family; MyFont What you will call your font when specifying which text elements
should use it.

src:url (/Fonts/MyFont.otf);} The file for you font. You can use TrueType (.ttf), OpenFont
(.otf), Web Open Font Format (woff), and Web Open Format 2 (woff2), files to do this. In this

example, we are using an OpenFont file.

h1 { Specifying these rules are for heading text.

color: #6F8FAF; Turns the color of the text to the color that displays the hex code
#6F8FAF (a shade of blue).

font-size: 2em; Specifies the size of the font.

font-family: MyFont;} Specifies the font itself using the name for the file you designated
for it.

https://www.w3schools.com/css/default.asp

BRIEF FLEXBOX AND POSITION DEFINITIONS

Because these CSS functions are commonly seen in examples of code, I will be giving
brief definitions of what they do. I will provide a more in-depth breakdown of their functions
in a later lesson. This is intended as a truly brief overview in order to make understanding
online posts more doable.

Flexboxes are created by styling a <div> with the declaration “display: flex;”. A flexbox
is a way to lay out your <div>s and other elements. It is one-dimensional, meaning it only
controls the layout of a column or a row, but not both at the same time. The direction a
flexbox modifies can be specified using further CSS declarations. When you style a <div> to
have the flex property, the <div>s placed inside it will place themselves in a line. It is also
possible to cause flexboxes to wrap elements inside them when they are too large to display
on a single line.

The position declaration declares… the position of an element. Below I will create a
table listing some position declarations and basic summaries of what that will do to an
element. This will only include positions which I feel are the most commonly used by hobby
webmasters. It is important to note that these positions determine how more of how an
element moves with the scrolling of a page, rather than it’s position horizontally or vertically.
There are the top, bottom, left, and right declarations to do that.

static The element moves normally when scrolling on the page. A
static element cannot have further styling to its left, right,
top or bottom position.

sticky The element moves normally when scrolling until its parent
element is no longer visible on the screen.

absolute Unlike relative, when an absolute element is positioned using
left, right, top or bottom, the space it would have taken up is
ignored by the elements which come after it, meaning it can
have elements overflown onto its space. If its parent
container is not set to relative, it will determine its position
based on the top of the HTML container.

relative Works similarly to static, but with the ability to determine it’s
position with the left, right, top, and bottom declarations.
Relative elements will overflow static elements, displaying
above them. This is because when a relative element’s
position is styled, the space where it is offset is made static.

fixed The element will stay on screen in the designated position
regardless of scrolling. It always considers the HTML
container itself its parent.

KEEPING IT TOGETHER: AN ORGANIZATION LESSON
So you’ve written all your code but you took a two week break from updating it and

now you have no idea what any of it means and does. A rookie mistake, and one I make often.
Here are some ways you can organize and notate your work so it’s less of a nightmare to
read back and update.

COMMENTS

HTML and CSS both have unique tags for leaving comments on their function. You
should use them often! HTML and CSS comments, when written correctly, will not appear on
the page itself or impact how it looks in any way. They are purely for your benefit!

<!-- Your comment here! --> An HTML comment. All comment text is kept within the
brackets and their opening and closing notation (the “--
>” punctuation.)

/* Your comment here! */ A CSS comment. All comment text is kept within the
slashes and their opening and closing notation (the “/*”
punctuation.)

FOLDERS

To return to the metaphor as HTML and CSS as houses, folders can be considered
different wings of a home, with each HTML document in it being a room. There are many
methods you can use when using folders for your website, but I prefer using them to break
down categories of pages on my site and to keep all site-wide documents and assets
together.

While I will be talking about the places where you can write code later in this
document, a good standard practice no matter where you’re writing it is to create a single
folder to house all things related to the website and web page(s) you’ll be coding. Within that
folder you can create subfolders to organize your documents.

When using folders, it’s crucial to be aware of file paths. File paths describe the
location of a file in your documents and folders. You can think of file paths like Russian
nesting dolls. When there is a folder inside another folder, you still have to look through each
one to find it, just like you have to open every large doll in order to see the smaller ones.
Let’s look at some different ways file paths can look and explain where they’re finding the
file they link to. This explanation will contain both a written explanation in a table, a drawn
structural explanation, and examples of what code containing folders and their file paths
could look like. In all of our examples we will be trying to link to an image for the sake of
continuity and ease of understanding.

 “picture.jpg” is in the same folder as the file you
are working on.

 “picture.jpg” is in a folder titled images in the
same folder as the file you are working on.

 “picture.jpg” is in a folder titled images in a folder
outside of the folder of the file you are working
on.

<img src=
”https://image.com/picture.jpg”>

“picture.jpg” is hosted on another website and you
are hotlinking to it.

The following are two examples of what someone using files in their document could
code. I will break down what each line of code is doing. Code will be highlighted in yellow.
Explanations of each line will be highlighted in blue.

Example 1:

<!DOCTYPE html> Defines the document as an HTML document.

<html lang="en"> Defines the language of the document as English.

<head> Contains text not seen on the page itself; the metadata of the page.

<meta charset="UTF-8"/> Defines the characters being used on the document.

<link rel="stylesheet" href="/style.css"> Links to a CSS document to style the page.

<title>YOUR PAGE TITLE</title> The title shown on the tab containing the page.

</head> Metadata ends, body elements will be visible.

<body> Body elements begin.

<p>I AM TYPING ABOUT picture.jpg! CLICK picture.jp FOR MORE INFORMATION!</p>
Paragraph text talking about image.jpg.

 A link to image.jpg.

 The file for image.jpg is in a folder outside of the folder your
current file is in. image.jpg is clickable.

 The link ends.

</body> The body elements end.

Example 2:

<!DOCTYPE html> Defines the document as an HTML document.

<html lang="en"> Defines the language of the document as English.

<head> Contains text not seen on the page itself; the metadata of the page.

<meta charset="UTF-8"/> Defines the characters being used on the document.

<link rel="stylesheet" href="/style.css"> Links to a CSS document to style the page.

<title>YOUR PAGE TITLE</title> The title shown on the tab containing the page.

</head> Metadata ends, body elements will be visible.

<body> Body elements begin.

<h1>LOOK AT image.png!</h1> Header text talking about image.jpg.

<p>I AM TYPING ABOUT picture.jpg!</p> Paragraph text talking about image.jpg

 The file for
image.jpg is on a different website than the one you are making. image.jpg is completely

contained somewhere. It is being described in alt text so a screen reader can read it aloud.

</body> The body elements end.

While there are many more ways to link things than just the two examples provided,
hopefully they provide enough information in tandem with previous examples to allow you to
make educated guesses about how to link something on your site.

NAMING YOUR <DIV>S BETTER (ADVICE I AM BAD AT TAKING)

While creating classes for your various <div>s with CSS, you are able to give them
each unique names. You should use this to your advantage by naming them something
related to their purpose on the site. If you are repeatedly using the same <div> on multiple
pages and want to give it a shorter name for ease of typing, make sure to use comments to
describe any shorthand that isn’t immediately understandable. An example of this could be
naming a <div> “d1” and using comments to designate that that <div> contains a sidebar to the
left side of the page.

WHERE TO WRITE CODE (AND HOW IT CAN BE EASIER)
Technically, you can write code in any word processing program. Some webhosting

services also have their own pages where you can write your HTML and CSS code. However,
I strongly advise against this as it can become confusing to manage if you are inexperienced
or working with long documents.

I would recommend using the program Phoenix Code for doing HTML and CSS. It is
also able to handle documents in other coding languages. The cool thing about Phoenix Code
is that it has a live preview feature, allowing you to watch how you code is changing the
appearance and function of your site in real time. Additionally, it has a function where every
time an HTML tag is opened, it automatically generates the closed tag for you to write your
text or additional code in.

PUTTING YOUR BULLSHIT UP PUBLICLY
While self-hosting is possible, it costs money and therefore I am unfamiliar with its

process. Because of this, I use the free version of the platform Neocities to host my website.
While there are other platforms you can freely host your work on, I find Neocities to be the
most well-known and easiest to use. Neocities also has a paid version of the platform which
includes more space, capabilities, and a custom URL.

Despite the limitations of Neocities’ free version, it is still possible to make an entirely
functional website using it, and yes, you can even include audio if you know what you’re
doing. Simply host it on another site and link it via an audio element.

On the topic of webhosting, do not use Neocities as a file dump. Not only is it against
their rules, it also fucks up their servers and is just plainly rude. There are many alternative
file hosting services available, my favorite being FileGarden. Other things to keep in mind on
the indie web is that blind people and people with photosensitive disorders still exist. Which
means there is no excuse to refuse to write alt text and intentionally use bright and flashing
gifs without proper warning. Don’t be an asshole.

FUCK CORPORATIONS AND CONFORMITY
So why did I write all this? I’m a hater of social media and I love teaching. I strongly

believe that the censorship and surveillance laws being passed in the recent months are
highly unethical. So I think the only people who are here for us, the weird, the queer, the
disabled, and by god those of us who want to watch porn or play violent video games. Make
your own website. Dedicate it solely to one weird cartoon you’re obsessed with. Show off
your bad sewing techniques. Write about your day. It doesn’t matter what it’s about. Make it
yours. Be proud of it. And encourage your friends to make their own bad website.

I’m not very good at coding but it doesn’t stop me from running this site. If you need
help with something and you think I could help you figure it out, email me at
letters2zenith@gmail.com.

 “You have to go the way your blood beats. If you don't live the only life you have, you
won't live some other life, you won't live any life at all.”

― James Baldwin

mailto:letters2zenith@gmail.com

