
Professor Rahul Jain’s research focuses on
Reinforcement Learning, Stochastic Control, Game
Theory and Networks. Recently, he has succeeded in
teaching a quadrupedal robot to walk. His recent
studies are on ‘Safe and Intelligent Autonomy’: the
development of reinforcement learning algorithms for
robots and vehicles. Because Artificial
Intelligence/Machine Learning is becoming
increasingly prevalent, Professor Jain’s research is
becoming increasingly more crucial to the scientific
community.

I hope to continue to learn about
machine learning. I plan to study
computer science in the future with that
studying I intend to contribute my
knowledge to the development of the
field.

To future SHINE students, my advice is
to work with your mentors and to to talk
to other students. Attend the events and
make sure to check Minga often.

I’d like to thank professor Jain for accepting me into
his laboratory for research, and my mentor XXXXXX
for teaching me about the ins and outs of machine
learning, as well as how to use different IDEs. I’d also
like to thank my family for supporting me in my pursuit
of the computer science field. Additionally I’d like to
thank the conductor of the 7:14 XXXXXX to Union
Station train for getting me to SHINE every day.

Reinforcement learning (RL) is an area of machine learning
concerned with how intelligent agents ought to take actions in
an environment in order to maximize the notion of cumulative
reward. Utilizing the simplicity and scalability of the transformer
architecture and associated advances in language modeling
such as GPT-X and BERT, we study a framework that
abstracts Reinforcement Learning (RL) as a sequence
modeling problem. Transformers can model high-dimensional
distributions of semantic concepts at scale. We will train this on
collected experience using a sequence modeling objective.

We first started our research with a simple
introduction to machine learning. Machine learning is
a field of research that makes use of data to gain
insights about it and use it for making predictions.
Machine learning can be broken up into three
categories, reinforcement learning, supervised and
unsupervised. These three categories consist of
many different algorithms.

We then studied neural networks, an architecture
used in the field of machine learning. In a neural
network, there are three types of layers; input layer,
output layer and several hidden layers. Layers
consist of nodes, which connect to each other in a
way similar to the neurons in a brain, hence the
name neural network. Observations are fed into the
input layer, which are then processed by the hidden
layers, the outcome of which will serve as an input
for one of the nodes in the output layer. Furthermore,
we discussed the activation functions and loss
function associated with neural network, and how
the neural networks learn.

We then turned our attention to methodologies within
reinforcement learning paradigm, starting with
Q-learning. In a Q-Learning algorithm, the agent
maintains a q-table to maximize the cumulative
reward achieved by the actions taken in an episode.
Every step, the q-table is updated to take into
account the reward returned by the environment.
The main limitation of Q-learning is that it
necessitates a q-table, making it impractical for
continuous spaces.

Utilizing the learned concept of Neural Networks and
Q-Learning, we then studied about Deep
Q-Networks [2], which are a combination of both
Q-learning algorithms and neural networks. We
learned about 2 important concepts used in this
algorithm, having an experience replay approach to
mitigate the issue of correlated data, and
maintaining a fixed target network in addition to the
main Q-network to deal with the issue of constantly
changing target values.

After understanding the basic concepts of neural
networks and some RL algorithms, we then moved
to the final part of the project where we applied
transformers in an RL setup.

Introduction Research & Learning Process

Next Steps for You &
Advice to Future SHINE

participants

Acknowledgements

Objective & Impact of Professor’s
Research

Decision Transformers for Reinforcement Learning
XXXXXXX | XXXX@usc.edu

SHINE Lab
 XXXXXXXXXXXXX High School, Class of 2025

USC Viterbi | Computer Science and Robotics, SHINE 2023

We used a Decision Transformer [1], which models trajectories
autoregressively with minimal modification to the transformer
architecture.

Trajectory Representation - Instead of feeding the rewards directly,
we feed the model with the returns-to-go. This is done since we would
like the model to generate actions based on future desired returns,
rather than past rewards.

Architecture - We feed the last K timesteps into Decision Transformer,
for a total of 3K tokens (one
for each modality: return-to-go, state, or action). To obtain token
embeddings, we learn a linear layer for each modality, which projects
raw inputs to the embedding dimension, followed by layer
normalization. The tokens are then processed by a GPT model, which
predicts future action tokens via autoregressive modeling.

Training - We sampled mini batches of sequence length K from the
dataset of offline trajectories. The prediction head corresponding to the
input token (state) is trained to predict (action) – either with
cross-entropy loss for discrete actions or mean-squared error for
continuous actions – and the losses for each timestep are averaged.

Citations
[1] Chen, Lili, et al. "Decision
transformer: Reinforcement learning via
sequence modeling." Advances in
neural information processing systems
34 (2021): 15084-15097.

[2] Mnih, Volodymyr, et al. "Playing atari
with deep reinforcement learning." arXiv
preprint arXiv:1312.5602 (2013).

Methods & Results

We achieved an average reward of
1672.53 on hopper-v3 mujoco
environment, and an average reward
of 3211.27 on walker-2d mujoco
environment. Unlike prior approaches
to RL that fit value functions or
compute policy gradients, Decision
Transformer simply outputs the optimal
actions by leveraging a causally
masked Transformer. On standard
offline RL benchmarks, we observed
Decision Transformer can match or
outperform strong algorithms designed
explicitly for offline RL with minimal
modifications from standard language
modeling architectures. By conditioning
an autoregressive model on the
desired return (reward), past states,
and actions, the Decision Transformer
model can generate future actions that
achieve the desired return.

Results Analysis

fig 1. decision transformer architecture

fig 2.-
Performanc
e of trained
decision
transformer
model on
Hopper-v3
and
Walker2d-v3
mujoco
environment
s.

